12,729 research outputs found

    The galaxy counterpart of the high-metallicity and 16 kpc impact parameter DLA towards Q0918+1636 - a challenge to galaxy formation models?

    Full text link
    The quasar Q0918+1636 (z=3.07) has an intervening high-metallicity Damped Lyman-alpha Absorber (DLA) along the line of sight, at a redshift of z=2.58. The DLA is located at a large impact parameter of 16.2 kpc, and has an almost solar metallicity. It is shown, that a novel type of cosmological galaxy formation models, invoking a new SNII feedback prescription, the Haardt & Madau (2012) UVB field and explicit treatment of UVB self-shielding, can reproduce the observed characteristics of the DLA. UV radiation from young stellar populations in the galaxy, in particular in the photon energy range 10.36-13.61 eV (relating to Sulfur II abundance), are also considered in the analysis. It is found that a) for L~L* galaxies (at z=2.58), about 10% of the sight-lines through the galaxies at impact parameter 16.2 kpc will display a Sulfur II column density N(SII)>> 1015.82^{15.82} cm2^{-2} (the observed value for the DLA), and b) considering only cases where a near-solar metallicity will be detected at 16.2 kpc impact parameter, the probability distribution of galaxy SFR peaks near the value observed for the DLA galaxy counterpart of ~27 Msun/yr. It is argued, that the bulk of the alpha-elements, like Sulfur, traced by the high metal column density, b=16.2 kpc absorption lines, were produced by evolving young stars in the inner galaxy, and later transported outward by galactic winds.Comment: 22 pages, 24 figures, MNRAS in pres

    CDM, Feedback and the Hubble Sequence

    Get PDF
    We have performed TreeSPH simulations of galaxy formation in a standard LCDM cosmology, including effects of star formation, energetic stellar feedback processes and a meta-galactic UV field, and obtain a mix of disk, lenticular and elliptical galaxies. The disk galaxies are deficient in angular momentum by only about a factor of two compared to observed disk galaxies. The stellar disks have approximately exponential surface density profiles, and those of the bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios of the disk galaxies are consistent with observations and likewise are their integrated B-V colours, which have been calculated using stellar population synthesis techniques. Furthermore, we can match the observed I-band Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have approximately r^{1/4} stellar surface density profiles, are dominated by non-disklike kinematics and flattened due to non-isotropic stellar velocity distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much more comprehensive paper about this work with links to pictures of some of the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436

    Spectral density of the Dirac operator in two-flavour QCD

    Full text link
    We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeV, and with spacings in the range 0.05-0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is non-zero because the low modes of the Dirac operator do condense as expected in the Banks-Casher mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of approximately 80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation

    Chiral symmetry breaking in QCD Lite

    Full text link
    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner (GMOR) relation. For the renormalisation-group-invariant ratios we obtain [\Sigma^RGI]^(1/3)/F =2.77(2)(4) and Lambda^MSbar/F = 3.6(2), which correspond to [\Sigma^\MSbar(2 GeV)]^(1/3) =263(3)(4) MeV and F=85.8(7)(20) MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.Comment: 4 pages, 3 figures, 1 tabl

    Reactive Atom Plasma (RAP) figuring machine for meter class optical surfaces

    Get PDF
    A new surface figuring machine called Helios 1200 is presented in this paper. It is designed for the figuring of meter sized optical surfaces with form accuracy correction capability better than 20 nm rms within a reduced number of iterations. Unlike other large figuring facilities using energy beams, Helios 1200 operates a plasma torch at atmospheric pressure, offers a high material removal rate, and a relatively low running cost. This facility is ideal to process large optical components, lightweight optics, silicon based and difficult to machine materials, aspheric, and free form surfaces. Also, the surfaces processed by the reactive atom plasma (RAP) are easy to fine polish through hand conventional sub-aperture polishing techniques. These unique combined features lead to a new capability for the fabrication of optical components opening up novel design possibilities for optical engineers. The key technical features of this large RAP machine are fast figuring capabilities, non-contact material removal tool, the use of a near Gaussian footprint energy beam, and a proven tool path strategy for the management of the heat transfer. Helios 1200 complies with the European machine safety standard and can be used with different types of reactive gases using either fluorine or chlorine compounds. In this paper, first the need for large optical component is discussed. Then, the RAP facility is described: radio frequency R.F generator, plasma torch, and 3 axis computer numerically controlled motion system. Both the machine design and the performance of the RAP tool is assessed under specific production conditions and in the context of meter class mirror and lens fabrication

    Lyman alpha Resonant Scattering in Young Galaxies - Predictions from Cosmological Simulations

    Full text link
    We present results obtained with a 3D, Ly alpha radiative transfer code, applied to a fully cosmological galaxy formation simulation. The developed Monte Carlo code is capable of treating an arbitrary distribution of source Ly alpha emission, neutral hydrogen density, temperature, and peculiar velocity of the interstellar medium. We investigate the influence of resonant scattering on the appearance and properties of young galaxies by applying the code to a simulated "Lyman Break Galaxy" at redshift z = 3.6, and of star formation rate 22 M_sun/yr and total Ly alpha luminosity 2.0 X 10^43 erg/s. It is found that resonant scattering of Ly alpha radiation can explain that young galaxies frequently are observed to be more extended on the sky in Ly alpha than in the optical. Moreover, it is shown that, for the system investigated, due to the anisotropic escape of the photons, the appearent maximum surface brightness can differ by a factor of ~15, and the total derived luminosity by a factor of ~4, depending on the orientation of the system relative to the observer.Comment: Letter updated to match version published in Ap

    A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios

    Full text link
    We re-analyse the kinematics of the system of blue horizontal branch field (BHBF) stars in the Galactic halo (in particular the outer halo), fitting the kinematics with the model of radial and tangential velocity dispersions in the halo as a function of galactocentric distance r proposed by Sommer-Larsen, Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF stars. The basic result is that the character of the stellar halo velocity ellipsoid changes markedly from radial anisotropy at the sun to tangential anisotropy in the outer parts of the Galactic halo (r greater than approx 20 kpc). Specifically, the radial component of the stellar halo's velocity ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/- 10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The rapid decrease in the radial velocity dispersion is matched by an increase in the tangential velocity dispersion, with increasing r. Our results may indicate that the Galaxy formed hierarchically (partly or fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation scenario, which for quite a while has been favoured by most theorists and recently also has been given some observational credibility by HST observations of a potential group of small galaxies, at high redshift, possibly in the process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm

    Supersonic flow calculation using a Reynolds-stress and an eddy thermal diffusivity turbulence model

    Get PDF
    A second-order model for the velocity field and a two-equation model for the temperature field are used to calculate supersonic boundary layers assuming negligible real gas effects. The modeled equations are formulated on the basis of an incompressible assumption and then extended to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressibility effects are completely accounted for by mean density variations alone. In order to calculate the near-wall flow accurately, correction functions are proposed to render the modeled equations asymptotically consistent with the behavior of the exact equations near a wall and, at the same time, display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall second order turbulence model for heat transfer is applicable to supersonic flows with different Prandtl numbers. The model is validated against flows with different Prandtl numbers and supersonic flows with free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the momentum thickness Reynolds number varies from approximately 4,000 to approximately 21,000. Good correlation with measurements of mean velocity, temperature, and its variance is obtained. Discernible improvements in the law-of-the-wall are observed, especially in the range where the big-law applies
    corecore